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Abstract. Exascale systems will present considerable fault-tolerance
challenges to applications and system software. These systems are ex-
pected to suffer several hard and soft errors per day. Unfortunately, many
fault-tolerance methods in use, such as rollback recovery, are unsuitable
for many expected errors, for example DRAM failures. As a result, appli-
cations will need to address these resilience challenges to more effectively
utilize future systems. In this paper, we describe work on a cross-layer
application / OS framework to handle uncorrected memory errors. We
illustrate the use of this framework through its integration with a new
fault-tolerant iterative solver within the Trilinos library, and present ini-
tial convergence results.
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1 Introduction

Proposed exascale systems will present extreme fault tolerance challenges to
applications and system software. In particular, these systems are expected to
suffer soft or hard errors at least several times a day. Such errors include un-
correctable DRAM failures, I/O system failures, and CPU logic failures. Un-
fortunately, fault-tolerance methods currently in use by large-scale applications,
such as roll-back recovery from a checkpoint, may be unsuitable to address the
challenges of exascale computing. As a result, applications will need to address
resilience challenges previously handled only by the hardware, OS, and run-time
system if they want to utilize future systems efficiently. Unfortunately, few in-
terfaces and mechanisms exist to provide applications with useful information
on the faults and failures that affect them. This is particularly true of DRAM
?
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failures, one of the most common failures in current large-scale systems [19], but
for which only low-level models of failure and recovery currently exist.

In this paper, we describe work on a collaborative application / OS system to
handle uncorrected memory errors. We begin by reviewing the basics of DRAM
memory failures and how they are handled in current systems. We then discuss
specific models of memory failures that we are examining for application design
and system implementation purposes, how the application, OS, and hardware
can interact under these failure models, and how applications recover in this
scenario. Based on this, we then present a simple OS and hardware interface
to provide the information to applications necessary to handle these errors, and
we outline an implementation of this interface. We illustrate the use of this in-
terface through its integration with a new fault-tolerant iterative linear solver
implemented with components from the Trilinos solvers library [9], and present
initial convergence results showing the viability of this recovery approach. Fi-
nally, we discuss related and future work.

2 DRAM Failures

DRAM memory modules are one of the most plentiful hardware items in modern
HPC systems. Each node may have dozens of DRAM chips, and large systems
may have tens or hundreds of thousands of DRAM modules. The combination
of the quantity and the density of the information they store makes them par-
ticularly susceptible to faults. As a result, most HPC systems include some
built-in hardware fault tolerance for DRAM. The most common hardware mem-
ory resilience scheme has the CPU memory controller write additional checksum
bits on each block of data written (128-bit blocks are used on modern AMD
processors, for example). The controller uses these bits to detect and correct
errors reading these blocks of data back into the CPU. Most modern codes
use Single-symbol3 Error Correction and Double-symbol Error Detection (SEC-
DED) schemes, allowing them to recover from the simplest memory failures and
at least detect more complex (and less frequent) ones.

Recent research has shown that uncorrectable errors (e.g., double-symbol
errors) are increasingly common in systems with SEC-DED memory protec-
tion [19], with uncorrectable DRAM errors occurring in up to 8% of DIMMs per
year. Such errors result in a machine check exception being delivered to the oper-
ating system, which then generally logs the error and either kills the application
or reboots the system depending upon the location of the error in memory. Some
systems exist for recovering from such errors, for example in Linux when they
occur in memory used for caching data or owned by a virtual machine [13], but
these systems are much too low-level to be useful to application developers.

3 A symbol in modern DRAM systems typically comprises 4 or 8 bits of data.
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3 Fault and Recovery Model

3.1 Fault Model

Because of their frequency, which is only expected to increase in future systems,
it is particularly important that applications be able to recover from DRAM
memory failures that hardware schemes cannot correct. Because these failures
can potentially destroy important application data, however, recovering from
them can be challenging. To address this issue, we examine a specific model for
memory failures that we believe is relevant to a range of applications, discuss
the application, OS, and hardware requirements of providing this failure model,
and discuss how applications can recover given this failure model.

For application design purposes, the initial model of failures we explore in
this work is of transient memory failures. In this model, applications designate
portions of DRAM memory may occasionally return incorrect values, and these
values are expected to revert to their original value in a finite amount of time.
We believe that this is a useful model for initial designs of robust numerical
algorithms, as it allows them to designate both essential memory and memory
that need only be usually correct. We illustrate the usefulness of this model to
a specific numeric algorithm later in this paper.

Because many DRAM memory errors are not in fact transient, the applica-
tion, OS, and hardware can cooperate to map the the hardware-provided fail-
ure model to one of transient DRAM memory failures. Specifically, we use a
combination of hardware-level memory error detection and either application or
system-level checkpointing [6] can work together to provide the appearance of
transient DRAM failures, assuming an underlying model of detected DRAM fail-
ures. This is particularly effective when the application and system rarely modify
the data being protected. For example, iterative methods for solving linear sys-
tems Ax = b generally do not modify the matrix A and any preconditioner(s),
which we exploit later in this work.

3.2 Recovery Model

To handle the failures discussed above, we present a recovery model oriented to-
wards iterative numerical methods where the algorithm can continue to converge
past faults that temporarily perturb its state. Because DRAM failures caused by
reading corrupted memory can be signaled by the hardware both synchronously
(due to an algorithm reading corrupted memory) and asynchronously (from the
memory scrubber), we focus on a model in which the algorithm running at the
time of a failure temporarily patches failures to allow progress to continue to be
made and then fully recovers from the detected error later.

Specifically, our recovery model comprises the following steps:

1. The application designates to the operating and runtime system the portions
of its memory in which it can tolerate a transient memory error. Errors in
portions of memory not so designated are deemed fatal and cause application
termination.
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/* Register callback for handling failure in specific allocation of

* failable memory at a specified byte offset and length. arg is an

* opaque user-supplied argument. */

typedef void (*memfail_callback_t)( void *allocation, size_t off,

size_t len, void *arg);

void memfail_recover_init( memfail_callback_t cb, void *arg );

/* Allocate resp. free failable memory */

void * malloc_failable( size_t len );

void free_failable( void *addr );

Fig. 1. Application / Library interface to handle DRAM memory failures

2. Upon receiving notification of an uncorrectable memory error in designated
memory, the OS signals the application that an error has occurred at a
specified address.

3. The application performs immediate but potentially partial fixes on the failed
memory sufficient to allow the current calculation to continue, possibly with
some degradation of accuracy.4

4. The application records that an error has perturbed the current calculation,
to prevent it from incorrectly succeeding and returning incorrect values (e.g.,
if the convergence metric has been corrupted).

5. The application resumes execution at the instruction that was executing
when the failure was detected.

6. At a well-defined point (e.g., every few iterations), the system or application
recovers the corrupted memory using, for example, an application-specific
recovery technique or a local checkpoint.

7. The application records that corrupted values have been fixed, potentially
allowing it to complete after an additional successful iteration.

4 Application / OS Interface

4.1 Design

We have designed an application / OS interface to support the fault and re-
covery models described in Section 3, and implemented a library to provide this
interface. Our key design goals were to provide a simple interface for applications
and algorithmic libraries, and to support existing OS-level interfaces to handling
memory errors such as those provided by Linux.

This application level of this interface, shown in Figure 1, focuses on run-
time memory allocation. In particular, the interface provides the application
with separate calls for allocating failable memory—memory in which failures will
cause notifications to be sent to the application. These calls work like malloc()

4 For example, a solver may replace corrupted matrix entries with averages of their
uncorrupted neighbors.
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and free(). In addition, the application also registers a callback with the library.
The callback is called once for every active allocation when the library is notified
by the OS of a detected but uncorrected memory fault in that allocation.

In addition to this interface, we also provide a simple producer-consumer
bounded ring buffer that the application can use to queue up a sequence of
failed allocations when signaled by the library. This ring buffer is non-blocking
and atomic to allow asynchronous callbacks from the library to enqueue failed
allocations that will be fully recovered at the end of an iteration. The application
determines the size of this buffer when it is allocated; the number of entries
needed must be sufficient to cover all of the allocations that could plausibly fail
during a single iteration. For applications with relatively few failable allocations,
this should be a minimal number of entries.

At the OS level, the library first notifies the operating system that it wishes
to receive notifications of DRAM failures, either in general or in specific areas of
its virtual address space depending upon the interface provided by the operating
system. Second, the library keeps track of the list of failable memory allocated
by the application so that it can call the application callback for each failed allo-
cation when necessary. Finally, the library handles any error notifications from
the operating system (e.g., using a Linux SIGBUS signal handler) and performs
OS-specific actions to clear a memory error from a page of memory if necessary
prior to notifying the application of the error.

4.2 Implementation

We added support for handling signaled memory failures as described in the
previous section to an existing incremental checkpointing library for Linux, lib-
hashckpt [8]. We chose this library because it helps track application memory
usage, and provides checkpointing functionality to recover from memory failures
for applications that cannot. Its ability to trap specific memory accesses eases
the testing of simulated memory failures, as described later in Section 4.3.

The modified version of the library adds the application API calls listed
previously in Figure 1, with the failable memory allocator using malloc() to
allocate and free memory. This allocator also keeps a data structure sorted by
allocation address of failable memory allocations.

Linux notifies the library of DRAM memory failures, particularly failures
caught by the memory scrubber using a SIGBUS signal that indicates the ad-
dress of the memory page which failed. The library then unmaps this failed
page using munmap(), maps in a new physical page using mmap(), and calls the
application-registered callback with appropriate offset and length arguments for
every failable application allocation that overlapped with the page that included
the failure.

Note that Linux currently only notifies the application of DRAM failures de-
tected by the memory scrubber. When the memory controller raises an exception
caused by the application attempting to consume faulty data, Linux currently
kills the faulting application. In addition, Linux only notifies applications of the
page that failed and expects the application to discard the entire failed page.
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This approach is overly restrictive in some cases, as the hardware notifies the
kernel of the memory bus line that failed, and some memory errors are soft and
could be corrected simply by rewriting the failed memory line.

4.3 Testing Support

To provide support for testing DRAM memory failures, we added support to the
incremental checkpointing library for simulating memory failures. In particular,
we added code that randomly injects errors at a configurable rate into the appli-
cation address space and uses page protection mechanisms, i.e., mprotect(), to
signal the application with a SIGSEGV when it touches a page to which a simu-
lated failure has been injected. The library then catches SIGSEGV and proceeds as
if it had received a memory failure on the protected page. We also implemented
a simulated memory scrubber in the library which can asynchronously inject
memory failures into the application by signaling the library when it scrubs a
memory location at which a failure has been simulated.

5 Fault-Tolerant GMRES

We have used the interface described in Section 4 to implement Fault-Tolerant
GMRES (FT-GMRES), an iterative method for solving large sparse linear sys-
tems Ax = b. FT-GMRES computes the correct solution x even if the system
experiences uncorrected faults in both data and arithmetic [10]. The algorithm
will always either converge to the right answer, or (in rare cases) stop and report
immediately to the caller if it cannot make progress. The algorithm accomplishes
this by dividing its computations into reliable and unreliable phases. Rather than
rolling back any faults that occur in unreliable phases, as a checkpoint / restart
approach would do, FT-GMRES rolls forward and progresses through any faults
in unreliable phases. FT-GMRES can also exploit fault detection, including but
not limited to the ECC memory fault notification discussed above, in order to
decide whether to accept the result of each unreliable phase.

FT-GMRES is based on the Flexible GMRES (FGMRES) algorithm of Saad
[16]. FGMRES extends the Generalized Minimal Residual (GMRES) method
of Saad and Schultz [18], by “flexibly” allowing the preconditioner (also called
the “inner solve”) to change in every iteration. The key observation behind
FT-GMRES is that flexible iterations allow successive inner solves to differ arbi-
trarily, even unboundedly. This suggests modeling memory or arithmetic faults
in the inner solves as “different preconditioners.” Taking this suggestion results
in FT-GMRES. The algorithm uses any existing solver to “precondition” an
FGMRES-based outer iteration. Our experiments use as the existing solver an
iterative method such as GMRES with its own preconditioner, though it may
be any algorithm (direct or iterative, dense or sparse or structured) that solves
linear systems.

FT-GMRES expects that inner solves do most of the work, so inner solves run
in the less expensive unreliable mode. The matrix A, right-hand side b, and any



7

other inner solver data may change arbitrarily, and those changes need not even
be transient. However, each outer iteration of FT-GMRES must run reliably, and
requires a correct copy of the matrix A, right-hand side b, and additional outer
solve data (the same that FGMRES would use). Since FT-GMRES expects only
a small number of outer iterations, interspersed by longer-running inner solves,
we need not store two copies (unreliable and reliable) of A and b in memory.
Instead, we can save them to a reliable backing store, or even recompute them.
With fault detection, we can avoid recovering or recomputing these data if no
faults occurred, or even selectively recover or recompute just the corrupted parts
of the critical data.

6 Initial Results

We have implemented FT-GMRES using components of the Trilinos solvers li-
brary [9], in particular Tpetra sparse matrices and vectors, Belos iterative linear
solvers (FGMRES for the outer iterations, and GMRES for the inner iterations),
and Ifpack2 incomplete factorization preconditioners. Trilinos already provides
a full hybrid-parallel (MPI + threads) implementation; we chose for simplicity
to limit initial experiments to a single MPI process. We only needed to modify
Trilinos to use the unreliable memory allocation interface described above. Our
entire solver prototype uses only 2500 lines of C++ code. For experiments, we
used the random fault injection feature of the incremental checkpointing library.
Detection of faults works entirely independently of fault injection, so the same
code would allow us to test actual hardware faults.

We tested FT-GMRES using the development (10.7) version of Trilinos, on
a Intel Xeon X5570 (8 cores, 2.93 GHz) CPU with 12 GB of main memory. We
chose for our test matrix an ill-conditioned Stokes partial differential equation
discretization Szczerba/Ill Stokes from the University of Florida Sparse Ma-
trix Collection (UFSMC) [4]. It has 25,187 rows and columns, 193,216 stored
entries, and an estimated 1-norm condition number of 4.85 × 109. For initial
experiments, we chose a uniform [−1, 1] pseudorandom right-hand side.

We ran FT-GMRES with 10 outer iterations. Each inner solve used 50 iter-
ations of standard GMRES (without restarting), right-preconditioned by ILUT
(see e.g., Saad [17]) with level 2 fill, zero drop tolerance, 1.5 relative threshold and
0.1 absolute threshold. (These are not necessarily reasonable ILUT parameters,
but they ensure a valid preconditioner for the problem tested.) We compared
FT-GMRES with standard GMRES both with and without restarting: 500 it-
erations of each, restarting if applicable every 50 iterations. (This makes the
memory usage of the two methods approximately comparable.) We set no con-
vergence criteria except for iteration counts, so that we could fully observe the
behavior of the methods. Our initial experiments use random fault injection at
a rate of 1000 faults per megabyte per hour, which is high but demonstrates
the solver’s fault-tolerance capabilities. Faults were allowed to occur in floating-
point data belonging to the matrix and the ILUT preconditioner. Furthermore,
to demonstrate the value of algorithmic approaches, our restarted GMRES im-
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Fig. 2. FT-GMRES (10 outer iterations, 50 inner iterations each), 500 iterations of
non-restarted GMRES, and 10 restart cycles (50 iterations each) of restarted GMRES.
(Down is good.)

plementation imitated FT-GMRES by also refreshing the matrix and ILUT pre-
conditioner from reliable storage before every restart cycle. (We optimized by
not refreshing if no memory faults were detected.)

Figure 2 shows our convergence results. FT-GMRES’ reliable outer itera-
tion makes it able to roll forward through faults and continue convergence. The
fault-detection capabilities discussed earlier in this work let FT-GMRES refresh
unreliable data only when necessary, so that memory faults appear transient to
the solver.

7 Related Work

There has been a wide range of research on application and OS techniques for
recovering from faults in HPC systems. This includes both algorithmic work
on allowing specific numeric codes to run failures, and OS-level work on han-
dling memory faults both transparently and directing to the application. In the
remainder of this section, we describe related work in both areas.

7.1 DRAM Error Handling

DRAM errors have been intensively studied in both HPC and other large com-
puting systems recently. Recent research has characterized both the frequency
of such errors in large scale systems [19], as well as the low-level patterns with
which they occur [14].
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OS-level handling of such faults has generally been either very limited or
used very heavyweight solutions. Linux and other operating systems, for exam-
ple, provide low-level techniques for handling, logging, and notifying the appli-
cation of such errors [13]. These techniques generally terminate the application,
potentially invoking higher-level recovery systems based on, for example, check-
pointing or redundancy. Some systems have attempted to provide additional
protection against memory faults both on CPUs [5] and GPUs [15], though with
substantial cost.

7.2 Fault Tolerant Algorithms

Most work in numerical linear algebra on fault tolerant algorithms falls in the
category of algorithm-based fault tolerance (ABFT) (see e.g., [12]). ABFT en-
codes redundant data into the matrices and vectors themselves, such that data
owned by failed parallel processors can be recomputed. Recent results using this
technique show this method can be used with a very low performance over-
head [3, 1]. Other authors have empirically investigated the behavior of iterative
solvers when soft faults occur (e.g., [1, 11]).

Inner-outer iterations with FGMRES have been used as a kind of iterative
refinement in mixed-precision computation [2], but as far as we know, this work
is the first to use flexible iterative methods for reliability and robustness against
possibly unbounded errors. Inexact Krylov methods generalize flexible methods
by allowing both the preconditioner and the matrix to change in every itera-
tion [20, 7]. However, inexact Krylov methods require error bounds, and thus
cannot be used to provide tolerance against arbitrary data and computational
faults when applying the matrix A.

8 Conclusions and Future Work

In this paper we presented a cooperative cross-layer application / OS framework
for recovering from DRAM memory errors. This framework allows the applica-
tion to allocate failable memory and provides notification and callback mecha-
nisms for failures that occur within these failable allocations. We described the
fault and recovery model for this framework. Finally, we presented initial results
of this framework using the new fault-tolerant linear solver FT-GMRES, and
showed that the solver is able to converge in the presence of memory failures.

These initial results are promising, but more work is needed. Larger-scale
studies are need to better characterize the cost of this framework at scale. Ad-
ditionally, we are in the process of identifying more algorithms that can benefit
from this DRAM failure framework.
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